WORSHOP CONSECANA PARANÁ

REGULAMENTO DO CONSELHO DOS PRODUTORES DE CANA-DE-AÇÚCAR, AÇÚCAR E ETANOL DO ESTADO DO PARANÁ – CONSECANA-PR.

MÓDULO 03 NORMAS OPERACIONAIS DE AVALIAÇÃO DA QUALIDADE DA CANA-DE-AÇÚCAR

V&R Consultoria e Projetos Ltda. Ramón Orlando Villarreal

18 de Novembro 2021

Módulo 3

Duração: 2 horas – 1 encontros de 2h - Data 18/11

Instrutor: Ramon O. Villarreal (Consultor ALCOPAR)

NORMAS OPERACIONAIS DE AVALIAÇÃO DA QUALIDADE DA CANA-DE-AÇÚCAR

- 3.1 Normas operacionais, operacionais de avaliação da qualidade da cana-de-açúcar. (Páginas 83 a 96)
- 3.2 Anexo I Preparo da mistura clarificante à base de alumínio. (Pág. 97 98)
- 3.3 Anexo II Teste de linearidade e repetitividade do refratômetro e sacarímetro. (Páginas 99 102)
- 3.4 Anexo III Determinação do teor de fibra % de cana Método de Tanimoto. <mark>(Páginas</mark> 103 - 104)
- 3.5 Anexo IV Determinação do teor de açúcares no caldo de cana-de-açúcar método de lane & Eynon. (Pág. 105 a 113)

ROTEIRO

- NORMAS OPERACIONAIS DE AVALIAÇÃO DA QUALIDADE DA CANA-DE-AÇÚCAR
- 2 Anexo I -Preparo da mistura clarificante a base de alumínio
- Anexo II- Teste de linearidade e repetitividade do refratômetro e sacarímetro.
- Anexo III Determinação do teor de fibra % Método de Tanimoto.
- Anexo IV: Determinação do teor de açúcares redutores de canade-açúcar- método de lane & Eynon.
- Anexo V Normas Mínimas para operação do laboratório de analises de cana-de açúcar.

NORMAS OPERACIONAIS DE AVALIAÇÃO DA QUALIDADE DA CANA-DE-AÇÚCAR

1: Amostragem Cana

2: Preparo da amostra

3: Extração do Caldo

4: Determinação do Bx e Pol Caldo extraido

5: Determinação da Fibra % Cana

6: Det. de açúcares redutores do caldo

7: Identificação Tecnológica

8: Credenciamento de representantes

Anexo I -Preparo da mistura clarificante a base de aluminio

Anexo II- Teste de linearidade e repetitividade do refratômetro

Anexo III - Determinação do teor de fibra % - Método de Tanimoto.

9: Comparação de resultados

10:Padronização de cálculos

11: Regras para arredondamentos

12: Ponderação Diária

13: Ponderação Quinzenal

14: Apuração dos valores médios quinzenais.

15: Cálculo dos ATR dos produtos

16: Transformação dos produtos finais em ATR

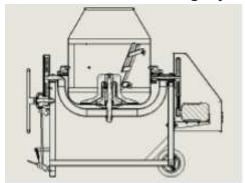
Anexo IV: Determerminação do teor de açúcares redutores de cana-de-açúcar- método de lane& eynon

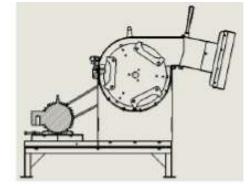
Anexo V - Normas Mínimas para operação do laboratório de analises de cana-de açúcar

NORMAS OPERACIONAIS DE AVALIAÇÃO DA QUALIDADE DA CANA-DE-AÇÚCAR

2.- Preparo da amostra

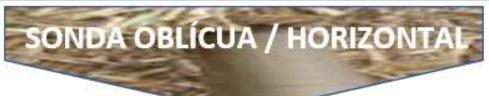
2.1


A amostra a ser analisada, resultante da mistura íntima das amostras simples, deverá ser preparada em aparelhos desintegradores que devem fornecer um índice de Preparo (IP) mínimo entre 85% (oitenta e cinco por cento) e 90% (noventa por cento).


2.2

As facas do desintegrador deverão ser substituídas diariamente, ou pelo menos a cada 250 amostras, sem prejuízo do valor do índice de preparo.

Processo de Desintegração e Homogeneização

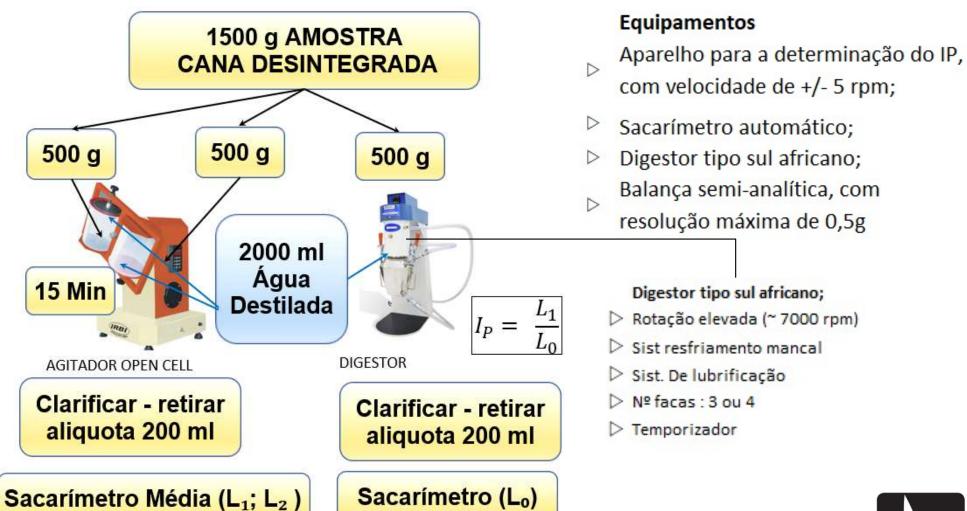


Paulo Biagi. STAB 2010.

2.- Preparo da amostra - FLUXOGRAMA

AMOSTRA DE CANA

CANA DESINTEGRADA


PRENSA HID.

DIGESTOR

2.- Preparo da amostra - Metodologia

2.3 A metodologia para a determinação do IP é a seguinte:

2.- Preparo da amostra

2.3 A metodologia para a determinação do IP é a seguinte:

Técnica

- Desintegrar uma amostra de cana, obtida através da amostragem mecânica de uma carga, com sonda amostradora, no desintegrador a ser avaliado;
- Homogeneizar a amostra preparada;
- Pesar 500g e transferir para o copo do digestor;
- Adicionar 2.000ml de água destilada e ligar o digestor por 15 minutos;
- Resfriar o extrato obtido e filtrar em funil de tela de filtro rotativo ou em algodão;
- Clarificar uma alíquota de 200ml do extrato, com mistura clarificante à base de alumínio e fazer a leitura sacarimétrica (L0);
- Pesar mais duas sub-amostras de 500g da cana preparada e colocar nos recipientes do aparelho de índice de preparo;
- Adicionar em cada recipiente 2.000ml de água destilada;
- Colocar o aparelho em funcionamento por 15 minutos;

2.- Preparo da amostra

2.3 A metodologia para a determinação do IP é a seguinte:

Técnica

- Filtrar os extratos obtidos em funil de tela de filtro rotativo ou em algodão;
- Clarificar uma alíquota de 200ml de cada extrato, com mistura clarificante à base de alumínio, fazer a leitura sacarimétrica das alíquotas e tirar a média (L1);
- O Índice de Preparo (IP) será dado por:

$$IP = \frac{L1}{L0} \times 100$$

A amostra preparada deverá ser homogeneizada mecanicamente e resultar, finalmente, numa subamostra de 1.500/2.000g para as análises tecnológicas.

3.- Extração do Caldo

- A amostra de cana preparada para a extração do caldo deverá ser de 3.1 500 ± 1 g. O material restante não deverá ser descartado até terminar a leitura de brix e da pol, servindo como contraprova.
- A prensa hidráulica deverá estar regulada para uma pressão de 24,5 MPa (250 kgf/cm2) no manômetro, admitindo-se uma tolerância de ± 0,98 MPa (10 kgf/cm2).

16658

Peso PBU

Caldo extraído

3.- Extração do Caldo

A prensa hidráulica deverá estar regulada para uma pressão de 24,5 3.2 MPa (250 kgf/cm2) no manômetro, admitindo-se uma tolerância de ± 0,98 MPa (10 kgf/cm2).

Para a calibração da prensa hidráulica, pode ser utilizada uma célula de carga com manômetro certificado por órgão competente.

A pressão sobre a amostra obedecerá ao valor determinado pelo fabricante do equipamento.

3.3 O tempo de prensagem deve ser de 60 segundos ± 5 segundos.

4.- Determinação do Brix e da Pol do caldo extraído

- Quando houver presença de impurezas minerais no caldo, o Brix poderá ser determinado em caldo filtrado em papel de filtro qualitativo a partir da 6ª gota do filtrado. Recomenda-se, também, um tratamento de caldo por filtração ou peneiragem, quando se utilizar a medição por espectrofotômetro de infravermelho próximo (NIR)
- A determinação da pol do caldo será efetuada de acordo com os parágrafos 5º a 8º do Artigo 3º das Normas de Avaliação da Qualidade da Cana-de-Açúcar para o Estado do Paraná (Anexo I do Regulamento).
- Todo o caldo clarificado deverá ser usado para a leitura sacarimétrica, respeitando-se o limite mínimo de 70 ml. Na hipótese de lavagem do tubo sacarimétrico com água, usar no mínimo 100 ml de caldo para a próxima leitura da pol.
- O preparo da mistura clarificante à base de alumínio, deverá obedecer os procedimentos descritos no Anexo I. Outros agentes clarificantes poderão ser utilizados após aprovação pelo CONSECANA-PARANÁ.

4.- Determinação do Brix e da Pol do caldo extraído

Caso não se consiga a clarificação do caldo com o uso das quantidades recomendadas, os seguintes procedimentos devem ser tomados, na ordem de preferência assinalada:

- Refiltragem do caldo clarificado;
 Repetição da análise, com nova extração de caldo e/ou nova clarificação
- do caldo disponível, na presença de um representante credenciado dos fornecedores de cana;
 - Diluição do caldo extraído bruto, na proporção de 1 (uma) parte de caldo para 1 (uma) parte de água destilada, peso/peso, com posterior
- clarificação, multiplicando-se, neste caso o valor da leitura sacarimétrica por 2, a cana cujo caldo extraído não for clarificado, após obedecidos os procedimentos anteriormente expostos, será considerada fora do sistema.

4.- Determinação do Brix e da Pol do caldo extraído

O sacarímetro será aferido inicialmente com placas de quartzo de valores conhecidos e, quando possível, calibradas por instituição oficial.

A linearidade e a repetitividade do refratômetro e do sacarímetro serão determinadas por leituras de soluções padrões de sacarose, conforme descrito no Anexo II.

5.- Determinação da fibra % cana

A fibra % cana será calculada de acordo com o Artigo 6º das Normas do Sistema de Avaliação da Qualidade da Cana-de-Açúcar do Estado do Paraná (Anexo I do Regulamento).

Art.	A fibra industrial por cento de cana (F) poderá ser determinada pelo método de	
6°	6º Tanimoto ou calculada através da seguinte expressão:	

F = 0,152 x PBU - 8,367 onde: PBU = peso do bagaço úmido (g)

Quando a Unidade Industrial optar pela determinação da Fibra % Cana, segundo Tanimoto, deve-se utilizar o procedimento constante no Anexo III.

5.2

6.- Determinação dos açúcares redutores do caldo

Os açúcares redutores de caldo serão calculados pela equação indicada no Artigo 3º, parágrafo 9º das Normas de Avaliação da Qualidade da Canade-Açúcar para o Estado do Paraná (Anexo I do Regulamento)

P.9 O teor de açúcares redutores (AR) por cento de caldo, poderá ser determinado pelo método de Lane & Eynon, ou calculado pela equação:

AR%caldo= 3,641 - (0,0343 * Q)

onde: Q = pureza do caldo

Quando a Unidade Industrial optar pela determinação dos açúcares redutores do caldo, segundo o método de Lane & Eynon, deve-se utilizar o procedimento cons tante do Anexo IV.

7.- Informações tecnológicas

Os Boletins Quinzenais deverão conter, no mínimo, as seguintes informações:

- Identificação da Unidade Industrial;
- Identificação do Fornecedor e do Fundo Agrícola;
- Cana Entregue;
- Cana Analisada;
- Brix, Pol e AR (Açúcares Redutores) do Caldo;
- Pol, Fibra, AR e ATR (Açúcar Total Recuperável) da Cana

8.- Credenciamento de representantes

As Unidades Industriais serão informadas pelos Sindicatos Rurais e/ou Associação de Classe dos Fornecedores de Cana-de-Açúcar, sobre os seus representantes credenciados.

9.- Comparação de resultados

A diferença máxima aceitável a 95% de probabilidade entre repetições de análises de brix e leitura sacarimétrica de um mesmo caldo, realizadas no mesmo laboratório e pelos mesmos operadores, é de:

A diferença máxima aceitável a 95% de probabilidade entre repetições de análises de brix, leitura sacarimétrica e peso de bolo úmido (PBU) de subamostras de uma mesma amostra homogênea de cana desintegrada, realizadas no mes mo laboratório com os mesmos operadores, é de:

9.2

9.3

Para comparações entre laboratórios, equipamentos e operadores diferentes em uma mesma amostra, os valores acima referidos nos ítens 9.1 e 9.2 devem ser multiplicados por 2 e considerados como valores máximos.

10.- Padronização de cálculos

10.1 Por Carga

Peso da carga (P):

Deverá ser expresso em quilogramas (kg), sem casas decimais

Brix do caldo extraído (B): Deverá ser expresso com uma casa decimal.

Pol do caldo extraído (S):

Deverá ser calculada pela equação:

 $S = LPb \times (0,2605 - 0,0009882 \times B)$

 $LPb = (1,00621 \times LAI + 0,051177)$

onde:

S = Pol do Caldo extraído

LPb = leitura sacarimétrica equivalente a de subacetato de chumbo;

LAI = leitura sacarimétrica com a mistura clarificante à base de alumínio.

B = Brix do caldo

Os cálculos intermediários deverão ser realizados com um arredondamento em 6 casas decimais e o resultado final expresso com duas casas decimais arredondadas.

10.- Padronização de cálculos

10.1 Por Carga

Fibra industrial % de cana (F) e Peso de Bolo Úmido (PBU)

O PBU será expresso com uma ou duas casas decimais, em função da precisão da balança utilizada na sua pesagem. Os cálculos intermediários serão realizados com todas as casas decimais e o resultado final deverá ser expresso com duas casas decimais arredondadas.

10.2 Médias Diárias

O Brix caldo deverá ser calculado e expresso com duas casas decimais arredondadas

A Pol caldo deverá ser calculada e expressa com duas casas decimais arredondadas...

A Fibra Industrial % cana deverá ser calculada e expressa com duas casas decimais arredondadas.

10.- Padronização de cálculos

10.2 Médias Diárias

A Pureza do caldo deverá ser expressa com duas casas decimais arredondadas e calculada de acordo com a seguinte expressão:

$$Qq = \frac{Sq}{Bq} \times 100$$

Qq = Pureza média quinzena

Sq = Pol do caldo, média quinzenal

Bq = Brix do caldo, médio quinzenal

Os Açúcares Redutores por cento de cana (AR) deverão ser expressos com quatro casas decimais arredondadas. Os cálculos intermediários deverão ser realizados com arredondamento em 6 casas decimais.

O açúcar total recuperável (ATR), deverá ser expresso com duas casas decimais arredondadas. Os cálculos intermediários deverão ser realizados com arredondamento em 6 casas decimais.

O valor da tonelada de cana (VTC) deverá ser expresso com duas casas decimais arredondadas. Os cálculos intermediários deverão ser realizados com 6 casas decimais arredondadas.

11.- Regra para arredondamentos

Entender-se-á por arredondamento em todos os cálculos previstos neste documento, a adição de uma unidade à última decimal especificada, caso a decimal seguinte esteja compreendida no intervalo de 5 a 9. Exemplo:

Número Obtido	Número Arredondado
15,45	15,5
18,431	18,43
13,457	13,46
14,45345	14,4535
16,63324	16,6332
0,67338	0,6734
1,06752	1,0675

12.- Ponderação diária

12.1 Brix do Caldo

$$Bd = \frac{B1 \times P1 + B2 \times P2 + \dots + Bn \times Pn}{P1 + P2 + \dots + Pn}$$

onde:

Bd = média ponderada diária de Brix do caldo;

B1, B2 ... Bn = brix % caldo da carga amostrada;

P1, P2 ... Pn = peso da carga amostrada

12.2 Pol do Caldo

Sd =
$$\frac{S1 \times P1 + S2 \times P2 + \dots + Sn \times Pn}{P1 + P2 + Pn}$$

onde:

Sd = média ponderada diária de Pol do caldo;

S1, S2 ... Sn = Pol do caldo da carga amostrada;

P1, P2 ... Pn = peso da carga amostrada.

12.- Ponderação diária

12.3 Fibra % Cana

$$Fd = \frac{F1 \times P1 + F2 \times P2 + + Fn \times Pn}{P1 + P2 + + Pn}$$

onde:

Fd = média ponderada diária de Fibra Industrial % cana;

F1, F2 ... Fn = Fibra % cana da carga amostrada;

P1, P2 ... Pn = peso da carga amostrada.

12.- Ponderação diária

12.4 Fator K

Para aplicação do disposto no Artigo 14 do Anexo I do Regulamento, o fator K deverá ser calculado para cada carga. Quando não houver desconto na carga, faz-se K = 1. A ponderação diária deverá ser feita pelas cargas amostradas no dia, como o que se segue:

$$Kd = \frac{K1 \times P1 + K2 \times P2 + \dots + Kn \times Pn}{P1 + P2 + \dots + Pn}$$

onde;

Kd = média ponderada diária de desconto;

K1, K2, Kn = desconto da carga amostrada

P1, P2 Pn = peso da carga amostra

13.- Ponderação quinzenal

13.1 Brix do Caldo

$$Bq = \frac{Bd1x P1 + Bd2 x P2 + + Bdn x Pn}{P1 + P2 + + Pn}$$

onde:

Bq = média ponderada quinzenal de Brix do caldo;

Bd1, Bd2 ... Bdn = Brix do caldo médio diário;

P1, P2 ... Pn = peso total diário de cana entregue pelo fornecedor.

13.2 Pol do Caldo

$$Sq = \frac{Sd1 \times P1 + Sd2 \times P2 + + Sdn \times Pn}{P1 + P2 + + Pn}$$

onde:

Sq = média ponderada quinzenal de pol do caldo;

Sd1, Sd2 ... Sdn = pol do caldo média diária;

P1, P2 ... Pn = peso total diário de cana entregue pelo fornecedor.

13.- Ponderação quinzenal

13.3 Fibra % Cana

$$Fq = \frac{Fd1 \times P1 + Fd2 \times P2 + \dots + Fdn \times Pn}{P1 + P2 + \dots + Pn}$$

onde:

Fq = média ponderada quinzenal de Fibra Industrial % cana;

Fd1, Fd2 ... Fdn = fibra % cana média diária;

P1, P2 ... Pn = peso total diário de cana entregue pelo fornecedor.

13.4 Fator K

A ponderação quinzenal deverá ser feita pelo total das cargas entregues na quinzena, conforme se segue:

$$Kq = \frac{Kd1 \times P1 + Kd2 \times P2 + \dots + Kdn \times Pn}{P1 + P2 + \dots + Pn}$$

onde:

Kq = média ponderada quinzenal de desconto;

Kd1, Kd2, Kdn = desconto médio diário;

P1, P2 Pn = peso total diário da cana entreguge pelo fornecedor

14.-Apuração dos valores médios quinzenais

Com os valores de Bq, Sq e Fq, calcula-se de acordo com a formulação específica já definida, a pureza do caldo (Pza), a Pol da cana (PC), os Açúcares Redutores (AR), o Açúcar Total Recuperável (ATR) e o Valor da Tonelada de Cana-de-Açúcar (VTC)

15.-Cálculo do ATR e produtos

15.1 ATR

ATR = (10x0,905 x1,0526xPC) + (10x0,905xAR) ou

ATR = (9,52603xPC) + (9,05xAR), onde:

ATR = Açúcar Total Recuperável, expresso em kg/t

onde:

ATR = Açúcar Total Recuperável, expresso em kg/t

PC = Pol da Cana (%)

AR = Açúcares Redutores da Cana (%)

O valor de 0,905 corresponde às perdas de 9,5% no processo industrial, excluída a fermentação e destilação.

O valor 1,0526 corresponde ao fator estequiométrico de conversão de sacarose em açúcares redutores.

15.1 **ATR**

Os açúcares redutores do caldo serão calculados através de uma equação de correlação entre a pureza do caldo e os açúcares redutores do mesmo e transformados em açúcares redutores da cana, cujas equações são as seguintes:

onde:

$$C = 1,0794 - 0,000874 \times PBU$$

AR % cana = açúcares redutores da cana(%); C = 1,0313 - 0,00575 x F C = coeficiente definido, conforme Art. 7°.

AR %caldo =
$$(3,641 - 0,0343 \times Pza)$$

AR = $(3,641 - 0,0343 \times Pza) \times (1-0,01xF) \times (1,0313-0,00575xF)$

onde:

Pza = Pureza do caldo

F = Fibra % cana

(1-0,01xF) = coeficiente do caldo absoluto da cana-de-açúcar

(1,0313-0,00575xF) = coeficiente de extração de caldo da prensa.

Quando o AR % caldo for determinado por análise, o cálculo do AR será feito pela equação seguinte:

AR % cana = AR % caldo x (1-0,01xF)x(1,0313-0,00575xF)

15.2 AÇÚCAR

Para o açúcar "branco" (denominado Açúcar Mercado Interno - AMI no

Consecana Paraná) adotou-se uma polarização de 99,7º S e mel final de
 □ 40% de pureza com 55% de açúcares redutores totais. Desta maneira, a recuperação da fabricação(R) dada pela equação SJM (Sugar Juice

Molasses), resulta em :

```
R = [99,74/(99,74-40)]x[1-40/(Pza-1)]
```

$$R = 1,66957 \times [1-40/(Pza-1)]$$

O açúcar Mercado Interno-AMI seria calculado por:

$$AÇÚCAR (99,7°S) = \{10 \times PC \times 0,905 \times 1,66957 \times [1-40/(Pza-1)]\}/0,997$$

 $AÇÚCAR(99,7°S) = 15,1551 \times PC \times [1-40/(Pza-1)]$

15.2 AÇÚCAR

Para o açúcar VHP (denominado Açúcar Mercado Externo - AME no

Consecana Paraná) adotou-se uma polarização de 99,3º S e mel final de

□ 40% de pureza com 55% de açúcares redutores totais. Desta maneira, a recuperação da fabricação(R) dada pela equação SJM (Sugar Juice Molasses), resulta em :

$$R = [99,30/(99,30-40)]x[1-40/(Pza-1)]$$

$$R = [99,30/(99,30-40)]x[1-40/(Pza-1)]$$

$$R = 1,6728 \times [1-40/(Pza-1)]$$

O açúcar Mercado externo-AME seria calculado por:

$$AÇÚCAR (99,3°S) = {10 \times PC \times 0,905 \times 1,6728 \times [1-40/(Pza-1)]}/0,993$$

$$AÇÚCAR(99,3°S) = 15,2456 \times PC \times [1-40/(Pza-1)]$$

15.2 ETANOL ANIDRO

Quando somente se produz Etanol Anidro, utiliza-se toda a quantidade de ATR para a fermentação e o cálculo é dado pela fórmula :

 $EA = ATR \times 0.5665$

0,5665 = rendimento global da destilaria. É produto do rendimento teórico para o etanol anidro (65,03) pela eficiência de fermentação (88%) e eficiência da destilação (99%).

15.3 ETANOL HIDRATADO

Quando somente se produz etanol hidratado , utiliza-se toda a quantidade de ATR para a fermentação e o cálculo é dado pela fórmula:

 $EH = ATR \times 0,5913$

0,5913 = rendimento global da destilaria . É produto do rendimento teórico para o etanol hidratado (67,87) pela eficiência de fermentação (88%) e eficiência da destilação (99%).

16.- Transformação dos produtos finais em ATR

16.1 AÇÚCAR BRANCO

A quantidade de ATR necessária para obter unidades do produto é dada por : 1,0 kg de açúcar branco com polarização de 99,7° S contém 0,997x1,0526 kg de ATR, ou seja,

1 kg de açúcar branco a 99,7°S equivale a 1,0495 kg de ATR. Açúcar branco = **1,0495 kg de ATR**.

16.2 AÇÚCAR VHP

1,0 kg de açúcar VHP com polarização de 99,3° S contém 0,993x 1,0526 kg de ATR, ou seja,

1 kg de açúcar VHP 99,3 equivale a 1,0453 kg de ATR.

Açúcar VHP = 1,0453 kg de ATR.

16.- Transformação dos produtos finais em ATR

16.3 ETANOL

Para Etanol Anidro e Hidratado, de acordo com as eficiências de fermentação e destilação adotadas, tem-se:

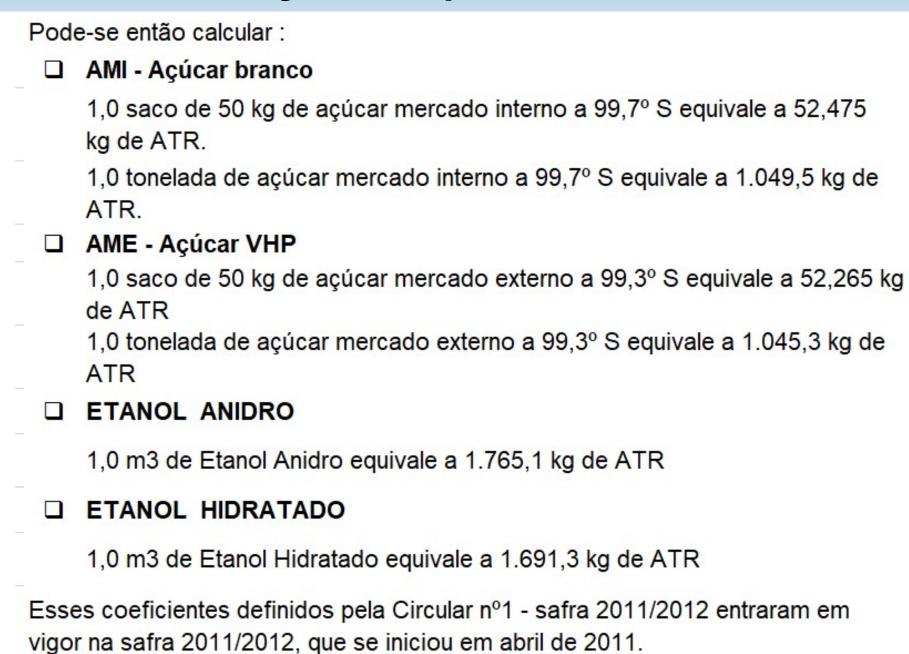
Etanol Anidro:

1,0 kg de ATR produz 0,5665 litros de Etanol Anidro a 99,3º INPM.

Para produzir 1,0 litro de Etanol Anidro necessita-se de 1/0,5665 =1,7651 Kg ATR

Etanol Anidro = 1,7651 kg de ATR

Etanol Hidratado:


1,0 kg de ATR produz 0,5913 litros de Etanol Hidratado a 99,3° INPM.

Etanol Hidratado = 1/0,5913 = 1,6913 kg de ATR

Para produzir 1,0 litro de Etanol Hidratado necessita-se de 1/0,5913 = 1,6913 Kg ATR

Etanol Hidratado = 1,6913 kg de ATR

16.- Transformação dos produtos finais em ATR

2

Anexo I -Preparo da mistura clarificante a base de alumínio

1. Componentes

Na clarificação do caldo extraído com a mistura clarificante, os seus componentes devem ter as seguintes especificações:

□ Cloreto de alumínio hexahidratado

Este produto químico deve ter especificações mínimas de reagente p.a. ("próanálise"), com pureza maior ou igual a 90%.

☐ Hidróxido de cálcio

Este produto químico deve ter especificações mínimas de reagente p.a. ("próanálise"), com pureza maior ou igual a 95%.

Auxiliar de filtração.

Este produto não interfere nas reações de clarificação, e então a sua especificação não é crítica para a mistura. Os seguintes produtos podem ser utilizados:

- Celite nuclear 545
- Celite Hyflo Supercel
- Perfiltro 443
- Fluitec M10 e M30

2. Homogeneização

A homogeneização constitui-se num ponto importante para se obter uma mistura clarificante eficiente. Os componentes do clarificante devem ser misturados em quantidade suficiente para o uso diário, utilizando-se um homogeneizador tipo tambor rotativo ou outro que promova uma mistura adequada. Antes do uso a mistura deve ser examinada visualmente para não conter aglomerados ou grumos, que indicarão uma homogeneização inadequada.

O exemplo dado a seguir indica as quantidades de cada produto necessários para produzir 1000 gramas da mistura:

- 1 parte de hidróxido de cálcio 143 g
- 2 partes de cloreto de alumínio hexahidratado 286 g
- 4 partes de auxiliar de filtração 571 g
- Total 1.000 g

3

Anexo II- Teste de linearidade e repetitividade do refratômetro e sacarímetro.

Efetuar teste de linearidade e repetitividade no refratômetro de acordo com especificações similares às normas AS-K 157 (Austrália).

1.1 <u>Teste de Linearidade</u>.

Estabelece que a "Saída da Linearidade" sobre qualquer parte da faixa até 30° Brix, não devendo exceder à mais ou menos **0,1° Brix**.

- Preparar soluções padrão de sacarose, respeitando intervalos de 10°
 Brix e cobrindo a faixa de 0 à 30° Brix. Ex.: 0, 10, 20 e 30° Brix.
- Efetuar 5 leituras de cada solução;
- Tirar a média das 5 leituras de cada solução e comparar com o valor em ºBrix esperado para cada solução, interpolando linearmente os extremos da faixa

1.1 Teste de Linearidade.

Estabelece que a "Saída da Linearidade" sobre qualquer parte da faixa até 30° Brix, não devendo exceder à mais ou menos **0,1° Brix**.

- Preparar soluções padrão de sacarose, respeitando intervalos de 10° Brix e cobrindo a faixa de 0 à 30° Brix. Ex.: 0, 10, 20 e 30° Brix.
- Efetuar 5 leituras de cada solução;
- Tirar a média das 5 leituras de cada solução e comparar com o valor em ºBrix esperado para cada solução, interpolando linearmente os extremos da faixa

Exemplo:

- Cinco Leituras de °Bx : 10,1; 10,2 ; 10,0 ; 10,1 ; 10,0°
- Maior valor: 10,2 °Bx
- Menor Valor: 10,0

$$M \to DIA = \frac{(10,2+10)}{2} = 10,1$$

- Calcular a média das diferenças e comparar com o valor especificado de +/- 0,10° Brix
- Repetir o procedimento para as outras faixas de Brix.

1.2 Teste de Repetitividade.

Requer que a diferença entre dois resultados simples, obtidos no instrumento, no mesmo laboratório, operado pelo mesmo analista, utilizando a mesma amostra, não deve exceder mais ou menos **0,2º Brix** em mais de um par de resultados em duplicata, em 20 repetições da mesma solução (ou 5 pares em 100 repetições);

- Preparar soluções padrão de sacarose, respeitando intervalos de 10° Brix e cobrindo a faixa de 0 à 30° Brix. Ex.: 0, 10, 20 e 30° Brix.
- Efetuar 20 leituras para cada um dos intervalos determinados, calcular o desvio padrão, reportando assim a repetitividade

1.3 Cuidados a serem tomados no preparo das soluções.

As soluções utilizadas na aferição do refratômetro deverão ser preparadas no próprio laboratório e no ato da aferição, evitando o uso de soluções deterioradas.

- As soluções deverão ser peso/peso;
- O peso final da solução deverá ser igual a 100,00g;
- As soluções de 10 e 20º Brix poderão ser aferidas efetuandose leitura sacarimétrica. E calculando-se posteriormente a pol, a qual deverá Apresentar os mesmos resultados do brix.

Preparo de soluções				
Peso deAçúcar (g)	+	Peso de Água (g)	=	Peso Total (g)
10,00	+	90,00	=	100,00
20,00	+	80,00	=	100,00
30,00	+	70,00	=	100,00

- 1.3 Cuidados a serem tomados no preparo das soluções.
 - As soluções de 10 e 20º Brix poderão ser aferidas efetuandose leitura sacarimétrica. E calculando-se posteriormente a pol, a qual deverá apresentar os mesmos resultados do brix.

Anexo III - Determinação do teor de fibra %. Método de Tanimoto.

Determinação do teor de fibra % de cana - Método de Tanimoto

1 Objetivo

Medir o teor de fibra real com secagem do bolo ou bagaço úmido(PBU) da prensa hidraulica após a extração do caldo.

2 Equipamentos e materiais

- Estufa elétrica com circulação forçada de ar, com capacidade mínima para 50 amostras.
 - Cesto de tela de filtro rotativo, medindo 240 x 160 x 80 mm, com furos de 0,5 mm
- ✓ de diâmetro. A quantidade de cestos necessário é de 150 a 200, para o volume de amostras processadas no dia.

3 Técnica

- Após a pesagem do bolo úmido (PBU), transferi-lo para um cesto tarado, sem perda de material;

 Desfazer o bolo úmido no próprio cesto, colocá-lo na estufa e deixá-lo secar até peso constante, à uma temperatura de 105°C;
- Retirar o cesto e pesar.

Obs.: O tempo de secagem para cada estufa deve ser determinado com ensaios iniciais até peso constante. O teste inicial é feito com secagem por 3 horas, pesagem e secagem por mais 1 hora e isto deve continuar até que não se obtenha variações no peso do material seco, ou esta não seja significativa. (~ 6 h)

Determinação do teor de fibra % de cana - Método de Tanimoto

4 Cálculo

Peso do bolo seco (**PBS**), em gramas= (Peso do cesto + bolo seco) – (Peso do cesto)

exemplo:

 Brix % do caldo extraido 	(B)	19,8
--	-----	------

Peso do bolo seco (PBS) (g) = 241,5 - 164,3 = 77,2

Fibra % Cana =
$$\frac{(100 \times PBS) - (PBU \times B)}{(5 \times (100 - B))}$$

Fibra % Cana =
$$\frac{(100 \times 77,2) - (142,4 \times 19,8)}{(5 \times (100 - 19,8))} = 12,22 \%$$

onde: PBS = peso do bolo seco;

PBU = peso do bolo úmido;

B = brix do caldo

Anexo IV: Determinação do teor de açúcares redutores de canade-açúcar.

Método de Lane & Eynon.

Fundamentos teóricos da metodologia

- O uso da oxiredutímetria na industria sucroenergética está fundamentado na propiedade de certos açúcares têm de reduzir o cobre das soluções alcalinas de certos sáis metálicos, do estado cúprico para o cuproso, através de seus grupamentos aldeídicos (glicose) e cetônicos (frutose).
- Felhing Soxhlet (1878) estabeleceram a preparação da solução de cobre em meio alcalino e propuseram dividir os componentes em dois soluções, para serem misturadas antes da titulação Chamou de Licor de Fehling A a solução de sulfato de cobre; e, de Licor de Fehling B a solução alcalina de tartarato duplo de sódio e potássio.
- Finalmente, **Eynon e Lane** (1923) objetivando facilitar a detecção do ponto final (ponto de virada) da titulação, introduziram o indicador Azul de Metileno. Este indicador tem a propiedade de se tornar incolor com um leve excesso de açúcares redutores. A introdução do Azul de Metileno tornou o método rápido e fácil.

1 Material

- · Bureta de Mohr, de 50 ml;
- Balão volumétrico, de 100 e 200 ml;
- Pipeta volumétrica, de 10, 20, 25 e 50 ml;
- Pipeta graduada, de 5 ml;
- Erlenmeyer, de 250 ml;

1 Material

- Funil sem haste, de 100 mm de diâmetro;
- Béquer, de 250 ml;
- · Pérolas de vidro:
- Tela de ferro galvanizado, com centro de amianto, de 200 x 200 mm;
- Tripé de ferro;
- Haste de ferro, com base e suporte para bureta;
- Pinça de Mohr;
- · Bico de gás, tipo Mecker, ou aquecedor elétrico, com regulagem de aquecimento;
- Cronômetro;
- Algodão.

2 Reagentes

- Solução de Fehling A;
- Solução de Fehling B;
- Solução de Azul de metileno, 1%;
- Solução de EDTA, 4%;
- Solução de açúcar invertido, 1% e 0,2%.

3 Técnica

- ✓ Filtrar a amostra de caldo em algodão para eliminar as partículas em suspensão;
- Diluir a amostra em volume ou em peso, visando a consumir na titulação um volume em torno de 35 ml, de maneira a reduzir os erros de análise;
- ✓ No quadro, a seguir, indicam-se algumas diluições que podem ser realizadas;
- ✓ A quantidade de EDTA deve ser adicionada antes de completar o volume a 100 ml:

Volume de Caldo (ml)	Volume de EDTA (ml)	Fator de Diluição (f)
10	2	10
20	4	5
25	5	4
50	10	2

- ✓ Lavar a bureta com a solução antes de encher e ajustar a zero;
- ✓ Transferir, com auxilio de pipetas volumétricas para erlenmeyer de 250 ml, 5 ml da solução de Feling B e 5 ml da solução de Fehling A;

3 Técnica

- ✓ Colocar algumas pérolas de vidro;
- Adicionar da bureta, 15 ml da solução e aquecer a mistura até ebulição, o que deve ser conseguido em 2 min e 30 s;
 - Se não ocorrer mudança de cor na solução, indicando que o licor de Fehling não foi reduzido,
- ✓ deve-se adicionar mais solução da bureta até que a cor original desapareça, tornando-se a mistura de cor vermelho tijolo;
- ✓ Anotar o volume gasto (V) como valor aproximado da titulação;
- Repetir as mesmas operações, adicionando no erlenmeyer além do licor de Fehling, o volume da solução consumido na titulação anterior menos 1 ml (V' 1);
- Aquecer a mistura até ebulição e então cronometrar exatamente 2 min, mantendo o líquido em ebulição constante;
- ✓ Adicionar 3 a 4 gotas da solução de azul de metileno;
- ✓ Completar a titulação, gota a gota, até completa eliminação da cor azul;
- ✓ O tempo total desde o inicio da ebulição até o final da titulação deve ser de 3 min;
- ✓ Anotar o volume gasto na bureta e corrigi-lo, com o fator do licor de Fehling, anotando-o como V.

4 Cálculo

A porcentagem de açúcares redutores pode ser obtida por diluição da amostra em volume ou em peso utilizando-se as fórmulas seguintes.

AR%
$$Cana = \frac{(f \times t)}{(V \times me)}$$

$$t = 5,2096 - \frac{0,2625 \times 0,26 \times LPb}{500}$$

onde:

f = fator de diluição

V = volume gasto corrigido

me = massa específica do caldo = 0,00431 x B + 0,99367

B = brix do caldo, válido entre 9 e 23

t = fator que considera a influência da sacarose na análise, dado por:

LPb = leitura sacarimétrica do caldo

V = volume gasto corrigido

Exemplo:

DADOS

Leitura sacarimétrica (LPb)	54,55
Fator de diluição (f)	5
Brix do caldo (B) (%)	15
Volume gasto corrigido (V) (ml)	34,2

massa específica do caldo me= 0,00431 x 15 + 0,99367 = 1,058320 g/ml

$$t = 5,2096 - \frac{0,2625 \times 0,26 \times 54,55}{500} = 4,954944$$

$$AR\% Cana = \frac{(1,058320 \times 4,954944)}{(34,2 \times 1,05832)} = 0,68$$

5 Preparo de soluções

5.1 Açúcar invertido, solução estoque à 1%

Uso: Padronização do licor de Fehling

Pesar 9,5 g de sacarose p.a.(ou açúcar granulado) e transferir para balão volumétrico

- √ de 1 000 ml com auxilio de, aproximadamente, 100 ml de água destilada e agitar até dissolução dos cristais;
- ✓ Acrescentar 5 ml de ácido clorídrico conc., p.a.e homogeneizar;
- Fechar o balão e deixar em repouso por 3 dias (72 h) à temperatura de 20° 25° C, para permitir completa inversão da sacarose;
- ✓ Após completar os 3 dias, elevar o volume até próximo a 800 ml e agitar;
 - Dissolver separadamente 2 g de ácido benzóico em 75 ml de água destilada aquecida
- ✓ (70°C) e transferir para o balão contendo a solução invertida, completar o volume e homogeneizar;
- A adição de ácido benzóico assegura a preservação da solução invertida, por um priódo de 6 meses;
- ✓ Armazenar em frasco ambar.

5 Preparo de soluções

5.2 Açúcar invertido, solução de uso à 0,2%

Uso: Padronização do licor de Fehling

- Pipetar 50 ml da solução estoque de açúcar invertido a 1% e transferir para balão volumétrico de 250 ml;
 - Adicionar 3 a 4 gotas de solução indicadora de fenolftaleína e sob agitação, adicionar
- ✓ lentamente a solução 1N de NaOH até leve coloração rosa, a qual deverá ser posteriormente eliminada, pela adição de 1 ou 2 gotas de solução de HCl 0,5N.
- ✓ Completar o volume com água destilada e homogeneizar

5.3 Azul de metileno à 1%

Uso: solução indicadora.

- ✓ Pesar 1 g de azul de metileno e transferir para balão volumétrico de
- ✓ 100 ml, com aproximadamente, 60 ml de água destilada;
- ✓ Dissolver, completar o volume e agitar;
- ✓ Transferir esta solução para frasco conta-gota

Obs. A vida útil da solução é, normalmente, de 6 meses

5 Preparo de soluções

5.4 EDTA à 4%

Uso: Agente sequestrante de cálcio e de magnésio das soluções açucaradas.

- Pesar 20,0 g de EDTA e transferir para balão volumétrico de 500 ml com água destilada;
- ✓ Solubilizar e completar o volume;
- ✓ Armazenar em frasco âmbar, com tampa rosqueável.

5.5 Solução A, de Fehling

Uso: Dosagem dos açucares redutores, pelo método de Lane & Eynon.

- Pesar 69,5 g de sulfato de cobre pentahidratado p.a. e transferir para balão volumétrico de 1 000 ml.
- ✓ Completar o volume e homogeneizar;
- ✓ Armazenar em frasco âmbar, com tampa rosqueável.

5 Preparo de soluções

5.6 Solução B, de Fehling

Uso: Dosagem dos açucares redutores, pelo método de Lane & Eynon.

- ✓ Pesar 346 g de tartarato de sódio e potássio em béquer de 1 000 ml;
- ✓ Adicionar cerca de 350 ml de água destilada e dissolver o sal;
- ✓ Pesar 100 g de hidróxido de sódio em béquer de 600 ml;
- Adicionar cerca de 250 ml de água e dissolver, mantendo o béquer em banho de água corrente;
- ✓ Transferir quantitativamente as duas soluções para balão volumétrico de 1 000 ml;
- ✓ Resfriar até à temperatura ambiente, homogeneizar e completar o volume;
- ✓ Armazenar em frasco âmbar, com tampa rosqueável.

Padronização do licor de Fehling (Determinação do fator f)

- Transferir com auxilio de pipetas volumétricas para erlenmeyer de 250 ml, 5 ml da solução de Fehling B e 5 ml da solução de Fehling A;
- ✓ Colocar algumas pérolas de vidro no erlenmeyer;
- ✓ Encher uma bureta de 50 ml, com solução de uso de açúcar invertido à 0,2 %;
- ✓ Adicionar da bureta. 24 ml da solução de acúcar invertido à 0.2%:

5 Preparo de soluções

Padronização do licor de Fehling (Determinação do fator f)

- Aquecer a mistura até atingir a ebulição e cronometrar exatamente 2 min, mantendo o líquido em ebulição constante, adicionar 3 a 4 gotas da solução de azul de metileno;
- Complementar a titulação, adicionando gota a gota, a solução contida na bureta, até completa eliminação da cor azul;
- ✓ O tempo total, desde o inicio da ebulição até o final da titulação deve ser de 3 min;
- ✓ Anotar o volume gasto (V);
- ✓ Repetir a titulação para confirmação do resultado;
 - Se for gasto um volume menor que 25,64 ml, a solução de cobre estará
- ✓ diluida e mais sal de cobre deverá ser adicionado; caso contrário, se gastar mais que 25,64 ml, a solução estará concentrada e deverá ser diluida com água destilada;

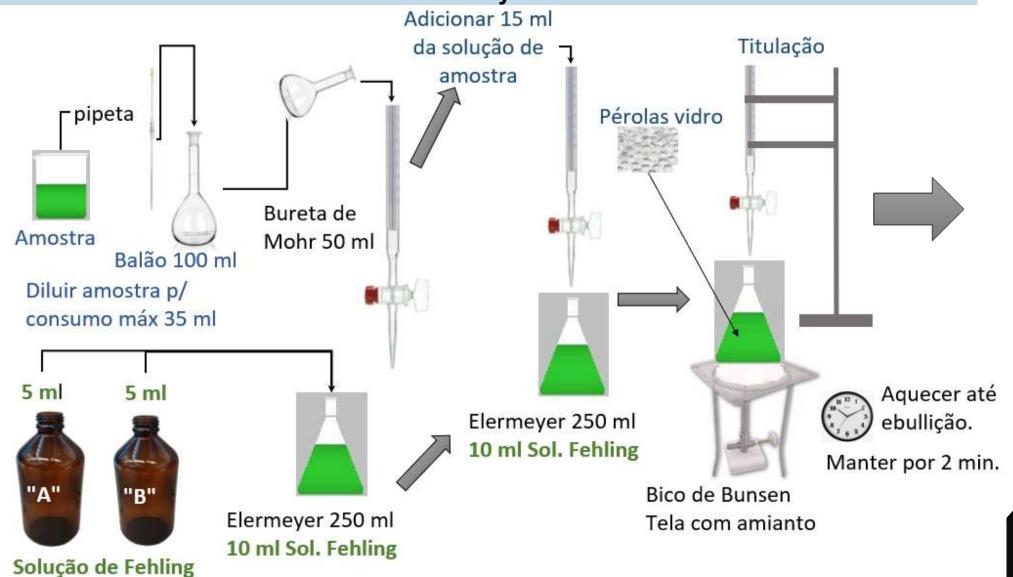
5 Preparo de soluções

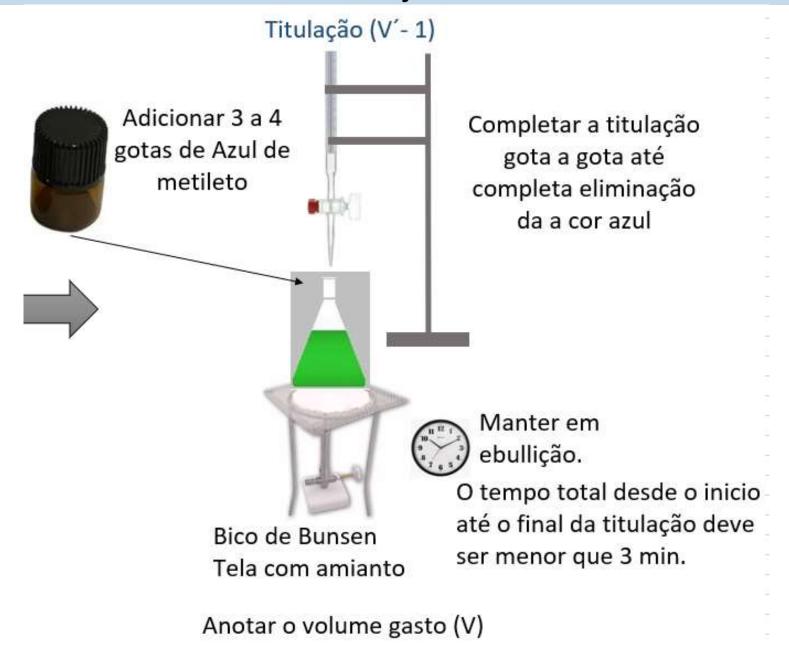
Padronização do licor de Fehling (Determinação do fator f)

✓ O fator de correção do licor de Fehling será:

$$F = \frac{25,65}{V}$$

onde:


F = fator do licor de Fehling


V = volume gasto (ml).

Observação:

O fator será aceitável se estiver entre 0,9975 a 1,0025;

Recomenda-se proceder a confirmação do fator, pelo menos, uma vez por semana

APARELHO PARA DETERMINAÇÃO DE AÇÚCARES REDUTORES MÉTODO DE LANE & EYNON

6

Anexo V - Normas Mínimas para operação do laboratório de analises de cana-de açúcar.

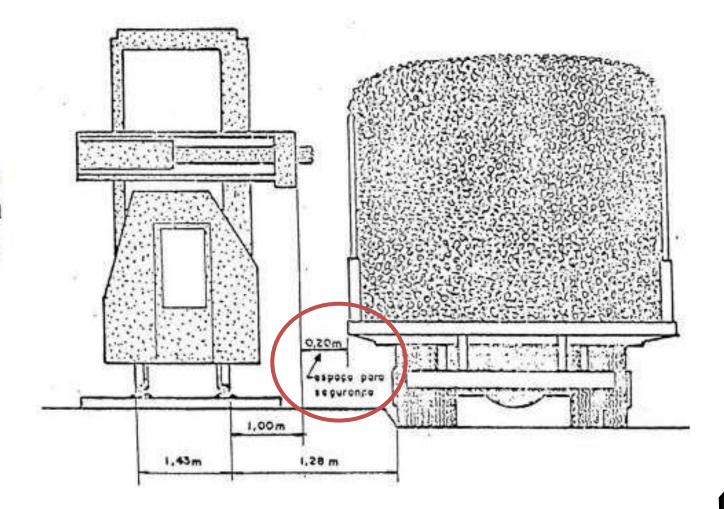
1 Balança rodoviária

	Laudo de aferição do INMETRO ou de entidade credenciada. O Laboratório de Análises de
	Cana-de-Açúcar deverá conter, no mínimo, as seguintes condições para seu funcionamento.

2 Localização do laboratório

O laboratório deverá estar localizado o mais próximo possível do local de tomada de amostras e em prédio próprio.

3 Localização da sonda amostradora


A sonda amostradora deve estar localizada conforme o disposto no parágrafo 1º do Artigo 2º do Anexo I do Regulamento do CONSECANA-SP.

Quando se tratar da amostragem com sonda amostradora montada sobre trilhos o estacionamento do veículo de carga a ser amostrado deverá se proceder de modo que a distância entre a coroa dentada do tubo amostrador e a cana do carregamento não ultrapasse a 20 cm (Fig. 1).

3 Localização da sonda amostradora

Fig. 1 – Distância entre o veículo e a sonda amostrada

4	Energia elétrica
	O laboratório deverá possuir rede elétrica estabilizada, especialmente para os equipamentos de análise, ou seja, refratômetro, sacarímetro e balança.
5	Temperatura ambiente
	A temperatura interna do Laboratório deve se situar entre 20°C a 25° C (graus Celsius).
6	Equipamentos (Dimensionamento)
	Sonda amostradora;
	Desintegrador de cana;
	Balança de precisão;
	Prensa hidráulica;
	Refratômetro digital, com correção automática de temperatura ou banho térmico com regulagem para 20°C;

A quantidade de equipamentos do laboratório deve ser compatível com a quantidade diária de análises.

					L	
75	on	aa	am	osi	trac	lora

Deverá existir no mínimo uma coroa dentada para reposição. Verificar a eficiência de corte (esmagamento da amostra).

8 Desintegrador

O desintegrador deverá estar em condições mecânico-operacionais normais, possuindo, no mínimo, um jogo de facas, de contra-faca e de martelos para reposição. A eficiência de

preparo deve ser verificada através de análise visual, não devendo existir, em grau acentuado, heterogeneidade de partículas (a ocorrência de pedaços com mais de 10cm em percentual superior a 10%,

9 Balança semi-analítica

A Balança Semi-Analítica deverá ser instalada em local adequado ao fluxo de análise e sem
 □ influência de correntes de ar e de trepidação. A estabilidade do ponto "0" (zero) e linearidade deverão ser verificadas periodicamente.

10 Prensa hidráulica

A operação da Prensa deverá estar de acordo com o estabelecido nestas normas (sub-item 3.2).

	Reagentes
	Verificar a procedência dos reagentes e a especificação técnica do fabricante. Observar se estão sendo utilizadas as quantidades recomendadas.
12	Material para análise
	Inclui béqueres, funis, balões volumétricos, frascos coletadores de caldo, bastonetes, etc., dimensionados em função do volume diário de análises.
13	Impressos
	Os Boletins Quinzenais devem estar de acordo com o disposto no item 5 das Normas Operacionais.
	Cálculos
	Os cálculos deverão ser realizados conforme o disposto nos ítens 10 a 17 das Normas Operacionais.
	Horário de funcionamento
	O horário de funcionamento do Laboratório deverá ser compatível com o horário de entrega de cana de fornecedores e com o número de cargas a serem amostradas.
	Mão-de-obra
	O número de funcionários deverá ser compatível com os equipamentos e o volume de cargas a ser amostrado.

REGULAMENTO DO CONSELHO DOS PRODUTORES DE CANA-DE-AÇÚCAR, AÇÚCAR E ETANOL DO ESTADO DO PARANÁ – CONSECANA-PR.

MÓDULO 03 NORMAS OPERACIONAIS DE AVALIAÇÃO DA QUALIDADE DA CANA-DE-AÇÚCAR

RAMÓN ORLANDO VILLARREAL

CONSULTOR ALCOPAR

rov1958@gmail.com

